본문 바로가기
728x90

파이썬170

[Python] Pandas 다루기 - 카테고리 데이터 import pandas as pd # 데이터 생성 ages = [0, 2, 10, 21, 23, 37, 31, 61, 20, 41, 32] # 구간 설정 : 맨 앞을 0으로 하면 0이라는 데이터가 결측값으로 출력되기 때문에 -1 bins = [-1, 15, 25, 35, 60, 99] labels = ['미성년자', '청년', '중년', '장년', '노년'] cats = pd.cut(ages, bins, labels = labels) print(cats) print('') print(type(cats)) # 데이터 프레임 생성 ages_df = pd.DataFrame(ages, columns = ['ages']) ages_df # 데이터 프레임에 카테고리 적용 ages_df['cat'] = cats a.. 2021. 4. 26.
[Python] Pandas 다루기 - 점수 데이터 import pandas as pd # 데이터 불러오기 score = pd.read_csv('score.csv', index_col = '과목', encoding = 'euc-kr') score # 합 구하기 : axis - 축의 발향 결정, 0이 기본값(수직방향), 1이 수평방향 # 1) 수직방향 print(score.sum()) print('') # 2) 수평방향 print(score.sum(axis = 1)) # 컬럼 추가 score['합계'] = score.sum(axis = 1) score # 열의 맨 끝에 평균 컬럼 추가하기 score['평균'] = score.loc[:, '1반':'4반'].mean(axis = 1) score # 행의 맨 끝에 반평균 컬럼 추가하기 score.loc['반평균.. 2021. 4. 26.
[Python] Pandas 다루기 - 인구 데이터 import pandas as pd # 데이터 불러오기 population_number = pd.read_csv('population_number.csv', index_col = '도시', encoding = 'euc-kr') # euc-kr은 한글을 읽도록 설정하는것 population_number # 데이터프레임 인덱싱 # 1) loc 사용 : 인덱스명, 컬럼명 사용 print(population_number.loc['서울', '2015']) # 2) iloc 사용 : 인덱스 넘버 사용 print(population_number.iloc[0,1]) type(population_number.iloc[0,1]) # 데이터 프레임 슬라이싱 # 1) loc 사용 : a 2021. 4. 26.
[Python] Pandas - Pandas 파이썬에서 사용하는 엑셀 대용량 데이터를 빠른 속도로 처리 Series와 DataFrame 요소 import pandas as pd - Series 1차원 배열, 인덱스(index) + 값(value) # Series 생성(2015년) population = pd.Series([9904312, 3448737, 2890451, 2466052], index = ['서울', '부산', '인천', '대구']) # Series에 이름 지정 population.name = '인구' population.index.name = '도시' population # Series 이름 확인 print(population.name) print('') # Series 값 확인 print(population.valu.. 2021. 4. 26.
728x90